1. Consider a sequence $\{a_n; n \geq 1\}$ of real numbers, where

$$
a_{n+1} = \frac{3}{2}a_n - \frac{1}{2}a_{n-1}
$$
 for all $n > 1$.

- (a) Show that the sequence converges.
- (b) Also find the limiting value of the sequence in terms of a_1 and a_2 . $[8+4]$
- 2. Let f be a real valued function defined on $[0, \infty)$ such that f is continuous on $[0, \infty)$, $f(0) = 0$ and f' is non-decreasing on (0, ∞). Define $g(x) = f(x)/x$ for all $x \in (0, \infty)$. Show that g is non-decreasing on $(0, \infty)$. [12] non-decreasing on $(0, \infty)$.

3. Let
$$
\mathbf{A}_{m \times m} = \begin{pmatrix} \frac{1}{\sqrt{m}} & \frac{1}{\sqrt{m}} & \cdots & \frac{1}{\sqrt{m}} \\ \mathbf{P}_{m-1 \times m} & \mathbf{P}_{m-1 \times m} \end{pmatrix}
$$
 be an orthogonal matrix
and **B** be an $m \times m$ symmetric matrix with rank $m - 1$ and
 $\mathbf{B} \mathbf{1}_m = \mathbf{0}$, where $\mathbf{1}_m = (1, 1, ..., 1)^T$ denotes the *m*-dimensional
vector with all elements equal to 1. Show that

(a) $\mathbf{P}^T \mathbf{P} = \mathbf{I} - \frac{1}{m}$ $\frac{1}{m}\mathbf{1}_m\mathbf{1}_m^T$, where **I** is the $m \times m$ identity matrix, (b) rank of \mathbf{PBP}^T is $m-1$.

Note: For a matrix **M**, its transpose is denoted by M^T . $[4+8]$

- 4. A fair coin is tossed repeatedly and let $\mathcal T$ be the number of tosses till two consecutive tails are observed for the first time.
	- (a) Show that

 $E(\mathcal{T} \mid \text{tail is observed in the first toss}) = 2 + \frac{1}{2}E(\mathcal{T}).$

(b) Find a similar formula for

 $E(\mathcal{T} \mid$ head is observed in the first toss).

(c) Compute
$$
E(\mathcal{T})
$$
. [6+3+3]

5. Consider a population consisting of k classes with proportions p_1, p_2, \ldots, p_k , where $p_i \in (0, 1)$ for every $i = 1, 2, \ldots, k$ and $p_1 + p_2 + \cdots + p_k = 1$. Let N denote the number of classes not represented in a random sample of size n drawn with replacement from the population. Find $E(N^2)$. $\left[12\right]$

- 6. Let U and V be two dependent discrete random variables, each being uniformly distributed on $\{1, 2, \ldots, k\}$. Let W be another random variable having the same uniform distribution but independent of U and V. Define a random variable $X = (V + W)$ mod k. Show that
	- (a) X is uniformly distributed on $\{0, 1, 2, \ldots, k-1\},\$
	- (b) U and X are independent. $[6+6]$
- 7. Consider a data set $(x_1, y_1), (x_2, y_2), \ldots, (x_{100}, y_{100}),$ where $x_i =$ a for all $i \leq 50$ and $x_i = b$ for all $i > 50$ $(a \neq b)$. Two regression functions

$$
y = \alpha_0 + \alpha_1 x
$$
 and $y = \beta_0 + \beta_1 x^3$

are fitted to this data set using the method of least squares. Which of these two models will lead to smaller residual sum of squares? Justify your answer. [12]

- 8. Let X_1, X_2, \ldots, X_n be independent and identically distributed normal random variables with mean θ and variance 1, where $\theta \geq 0$. Find
	- (a) the maximum likelihood estimator $\hat{\theta}_n$ of θ ,
	- (b) the asymptotic distribution of $T_n = \sqrt{n} \hat{\theta}_n$ when $\theta = 0$. [4+8]
- 9. Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution. For each $j = 1, 2, \ldots, n$, let

$$
R_j = \#\{i : \ X_i \le X_j, \ 1 \le i \le n\}.
$$

Thus, R_j is the number of random variables X_i $(i = 1, 2, \ldots, n)$ which are less than or equal to X_j .

- (a) Find the correlation coefficient between R_1 and R_n .
- (b) For any fixed k $(1 < k < n)$, find the correlation coefficient between $Y_1 = \sum_{j=1}^k R_j$ and $Y_2 = \sum_{j=k+1}^n R_j$ $[9+3]$

10. For $\mathbf{x} = (x_1, ..., x_d) \in \mathbb{R}^d$, define $\|\mathbf{x}\| = \sqrt{x_1^2 + \cdots + x_d^2}$ $\frac{2}{d}$.

- (a) Show that $f(\mathbf{x}) = ||\mathbf{x}||$ is a convex function.
- (b) Let X be a *d*-dimensional random vector symmetrically distributed about the origin (i.e. \bf{X} and $\bf{-X}$ have the same distribution). Show that $\psi(\boldsymbol{\theta}) = E\|\mathbf{X} - \boldsymbol{\theta}\|$ is minimized at $\theta = 0.$ [4+8]

